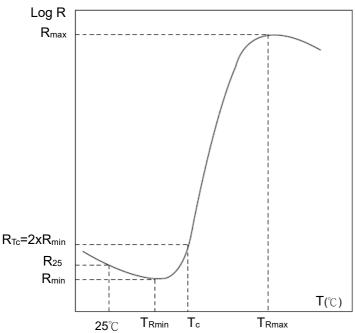

◆ Voltage-current characteristic (V-I curve, see Fig. 2)

V-I curve is relationship of voltage and current in thermally steady state and in still air at 25° C.

• Current-time characteristic (I-T curve, see Fig. 3)

I-T curve is relationship of current and time in specified voltage and current in still air at 25° C.

THINKING ELECTRONIC INDUSTRIAL CO., LTD. All specifications are subject to change without notice.



Zero-power resistance (RT)

The zero-power resistance is the resistance value measured under specified temperature conditions, and the self-heating during measurement can be negligible.

• Resistance-temperature characteristic (R-T curve, see Fig. 4)

R-T curve is relationship of zero-power resistance and temperature of CPTC thermistor at specified direct voltage. It is a curve drawn on a semi-logarithmic coordinate graph (Temperature (T) is on X-axis and resistance (R) is on Y axis).

R₂₅: Zero power resistance at 25°C R_{min}: Minimum resistance T_{Rmin}: Temperature corresponding to minimum resistance Tc: Curie temperature or switch temperature R_{Tc}: Switch resistance (RTc=2xRmin) R_{max}: Maximum resistance T_{Rmax}: Temperature corresponding to maximum resistance

Minimum resistance (Rmin)

Minimum resistance is the lowest resistance on R-T curve and corresponds to T_{Rmin} , temperature of minimum resistance. (see Fig. 4)

Temperature of minimum resistance (T_{Rmin})

 T_{Rmin} is temperature that corresponds to R_{min} on R-T curve.

Curie temperature or switch temperature (Tc)

Cuire temperature is temperature that corresponds to $R_{Tc} = 2 \times R_{min.}$ When the temperature is reached, a step-like increase of CPTC thermistor resistance is started.